Explaining Constrains Causal Learning in Childhood
نویسندگان
چکیده
منابع مشابه
Explaining Constrains Causal Learning in Childhood.
Three experiments investigate how self-generated explanation influences children's causal learning. Five-year-olds (N = 114) observed data consistent with two hypotheses and were prompted to explain or to report each observation. In Study 1, when making novel generalizations, explainers were more likely to favor the hypothesis that accounted for more observations. In Study 2, explainers favored...
متن کاملExplanation Constrains Learning, and Prior Knowledge Constrains Explanation
A great deal of research has demonstrated that learning is influenced by the learner’s prior background knowledge (e.g. Murphy, 2002; Keil, 1990), but little is known about the processes by which prior knowledge is deployed. We explore the role of explanation in deploying prior knowledge by examining the joint effects of eliciting explanations and providing prior knowledge in a task where each ...
متن کاملExplaining compound generalization in associative and causal learning through rational principles of dimensional generalization.
How do we apply learning from one situation to a similar, but not identical, situation? The principles governing the extent to which animals and humans generalize what they have learned about certain stimuli to novel compounds containing those stimuli vary depending on a number of factors. Perhaps the best studied among these factors is the type of stimuli used to generate compounds. One promin...
متن کاملFailures of explaining away and screening off in described versus experienced causal learning scenarios.
Causal Bayes nets capture many aspects of causal thinking that set them apart from purely associative reasoning. However, some central properties of this normative theory routinely violated. In tasks requiring an understanding of explaining away and screening off, subjects often deviate from these principles and manifest the operation of an associative bias that we refer to as the rich-get-rich...
متن کاملCausal Networks Learning Acausal Networks Learning Influence Diagrams Learning Causal-Network Parameters Learning Causal-Network Structure Learning Hidden Variables Learning More General Causal Models Advances: Learning Causal Networks
Bayesian methods have been developed for learning Bayesian networks from data. Most of this work has concentrated on Bayesian networks interpreted as a representation of probabilistic conditional independence without considering causation. Other researchers have shown that having a causal interpretation can be important, because it allows us to predict the effects of interventions in a domain. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Child Development
سال: 2016
ISSN: 0009-3920,1467-8624
DOI: 10.1111/cdev.12590